Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells.
نویسندگان
چکیده
Phenolic phytochemicals are a broad class of nutraceuticals found in plants which have been extensively researched by scientists for their health-promoting potential. One such a compound which has been comprehensively used is eugenol (4-allyl-2-methoxyphenol), which is the active component of Syzigium aromaticum (cloves). Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature showed eugenol possesses antioxidant, antimutagenic, antigenotoxic, anti-inflammatory and anticancer properties. Molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented. This review article will highlight the antiproliferative activity and molecular mechanism of the eugenol induced apoptosis against the cancer cells and animal models.
منابع مشابه
In-vitro assessment of the antiproliferative and apoptotic potential of the ethyl acetate extract of Peltophorum africanum on different cancer cell lines
We evaluated the in vitro antiproliferative and apoptotic potential of the ethyl acetate extract (EAE) of Peltophorum africanum, a member of the family Fabaceae (Sond) in order to validate its pharmacological use. Antiproliferation of human breast (MCF-7), colon (HT-29) and cervical (HeLa) cancer cell lines by EAE was investigated using the Cell Titer-Blue viability assay and the mechanism of a...
متن کاملIn-vitro assessment of the antiproliferative and apoptotic potential of the ethyl acetate extract of Peltophorum africanum on different cancer cell lines
We evaluated the in vitro antiproliferative and apoptotic potential of the ethyl acetate extract (EAE) of Peltophorum africanum, a member of the family Fabaceae (Sond) in order to validate its pharmacological use. Antiproliferation of human breast (MCF-7), colon (HT-29) and cervical (HeLa) cancer cell lines by EAE was investigated using the Cell Titer-Blue viability assay and the mechanism of a...
متن کاملAntiproliferative activity and apoptosis inducing mechanism of Anthocephalus cadamba on Dalton’s lymphoma ascites cells
AbstractThe purpose of this investigation was to evaluate the antiproliferative and apoptogenic mechanistic studies of methanol extract of Anthocephalus cadamba (MEAC) on Dalton’s lymphoma ascites (DLA) cells treated mice. Determination of antiproliferative activity was performed by using different DLA cells (2×106 cells, i.p.) inoculated mice groups (n=12). Groups were treated for 14 consecuti...
متن کاملAntiproliferative activity and apoptosis inducing mechanism of Anthocephalus cadamba on Dalton’s lymphoma ascites cells
AbstractThe purpose of this investigation was to evaluate the antiproliferative and apoptogenic mechanistic studies of methanol extract of Anthocephalus cadamba (MEAC) on Dalton’s lymphoma ascites (DLA) cells treated mice. Determination of antiproliferative activity was performed by using different DLA cells (2×106 cells, i.p.) inoculated mice groups (n=12). Groups were treated for 14 consecuti...
متن کاملCabazitaxel antiproliferative mechanism of action in U87MG human glioblastoma cells: a promising cell-cycle phase-specific radiosensitizer
Introduction: One mechanism of cell cycle manipulation and mitotic catastrophe is arrest at G2/M phase of cell cycle. Cabazitaxel, a mitotic inhibitor agent, is a second-generation semisynthetic taxane. An expected anti-neoplastic effect of Cabazitaxel is cell cycle perturbation and alteration of microtubule dynamics. In contrast to other taxane compounds, Cabazitaxel is a poo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 17 6 شماره
صفحات -
تاریخ انتشار 2012